SUGGESTED SOLUTION TO HOMEWORK 3

JUNHAO ZHANG

Problem 1. (a) Let p be the Minkowski functional for a convex set $U \subset X$. Show that for $x \neq 0, p(x)=0$ if and only if $x \in t U$ for every $t>0$.
(a) Show that $p(x) \leq 1$ if $x \in U$, and $p(x) \geq 1$ if $x \notin U$.

Proof. (a) If $0 \neq x \in t U$ for every $t>0$, by the definition of $p(x)$, for all $t>0$ such that $x \in t U$ and

$$
t>p(x)
$$

which implies $p(x)=0$. If $x \neq 0$ and $p(x)=0$, then for arbitrary fixed $\varepsilon>0$, there exists $t^{\prime}>p(x)=0$ such that $x \in t^{\prime} U$ and

$$
t^{\prime}<p(x)+\varepsilon=\varepsilon .
$$

Therefore for arbitrary fixed $t>0$, choosing $\varepsilon \leq t$, by convexity, we have $x \in t^{\prime} U \subset$ $t U$.
(b) If $x \in U$, then $p(x) \leq 1$ by the definition. If $x \notin U$, suppose $p(x)<1$, then for arbitrary $\varepsilon>0$, there exists $t>p(x)$ such that $x \in t U$ and

$$
t<p(x)+\varepsilon
$$

therefore by choosing $\varepsilon=1-p(x)$, we have $p(x)<t<1$, then $x \in t U \subset U$ which is a contradiction. Therefore $p(x) \geq 1$ for $x \notin U$.

Problem 2. Let M be the set of sequences in the real space c_{00} for which the leading nonzero term is positive. Show that the sets M and $-M$ are convex and disjoint, but they cannot be separated by a hyperplane.

Proof. Recall that c_{00} is the set of sequences x such that $x(n)=0$ for all but finitely many $n \in \mathbb{N}$. We show that M and $-M$ are convex and disjoint. It is clear that M and $-M$ are disjoint. For $x_{1}, x_{2} \in M$, and $0 \leq \lambda \leq 1$, we assume that there exists $N \in \mathbb{N}$ such that for all $n>N$,

$$
x_{1}(n)=x_{2}(n)=0,
$$

therefore

$$
\lambda x_{1}(n)+(1-\lambda) x_{2}(n)=0
$$

which implies $\lambda x_{1}+(1-\lambda) x_{2} \in c_{00}$. Moreover, suppose the leading nonzero terms in x_{1} and x_{2} are $x_{1}\left(n_{1}\right)>0$ and $x_{2}\left(n_{2}\right)>0$ respectively, with out loss of generality, we assume $n_{1} \leq n_{2}$, therefore

$$
\lambda x_{1}\left(n_{1}\right)+(1-\lambda) x_{2}\left(n_{1}\right) \geq \lambda x_{1}\left(n_{1}\right)>0
$$

which implies $\lambda x_{1}+(1-\lambda) x_{2} \in M$, therefore M is a convex set. In the similar way, we can prove that $-M$ is also a convex set.

Then suppose to the contrary, that there exist $f \in\left(c_{00}\right)^{*}$ and constant $c \in \mathbb{R}$ such that

$$
f(x) \geq c>f(y), \quad \forall x \in M, y \in-M
$$

For $i \in \mathbb{N}$, let e_{i} be defined as

$$
e_{i}(j)= \begin{cases}1, & j=i, \\ 0, & j \neq i\end{cases}
$$

Then since $e_{i} \in M$ and $-e_{i} \in-M$, therefore

$$
f\left(e_{i}\right) \geq c, \quad f\left(e_{i}\right)>-c
$$

If $c=0$, then for all $i \in \mathbb{N}$,

$$
f\left(e_{i}\right)>0 .
$$

Taking

$$
x_{0}(k)= \begin{cases}1, & k=1 \\ -2 \frac{f\left(e_{1}\right)}{f\left(e_{2}\right)}, & k=2 \\ 0, & k \geq 3\end{cases}
$$

then

$$
f\left(x_{0}\right)=-f\left(e_{1}\right)<0,
$$

which is a contradiction since $x_{0} \in M$. For $c \neq 0$, without loss of generality, we assume $c>0$, since $\left(c_{00}\right)^{*}=\ell^{1}$, there exists $f^{\prime} \in \ell^{1}$ such that for all $x \in c_{00}$,

$$
f(x)=\sum_{i=1}^{\infty} f^{\prime}(i) x(i)
$$

then for each $i \in \mathbb{N}$, by taking $x=e_{i}$,

$$
f^{\prime}\left(e_{i}\right) \geq c>0
$$

therefore $f^{\prime} \notin \ell^{1}$ which is a contradiction.
Problem 3. Let $C([0,1])$ be the vector space of continuous functions on $[0,1]$. Define $\delta(x)=x(0)$ for $x \in C([0,1])$.
(a) Show that δ is a bounded linear functional if $C([0,1])$ is endowed with the sup-norm. Find the norm of δ.
(b) Show that δ is an unbounded linear functional if $C([0,1])$ is endowed with the norm

$$
\|x\|=\int_{0}^{1}|x(t)| d t
$$

Proof. (a) It is clear that δ is a linear functional. Moreover, for all $x \in C([0,1])$,

$$
|\delta(x)|=|x(0)| \leq\|x\|_{\infty}
$$

which implies δ is bounded and $\|\delta\|_{(C([0,1]))^{*}} \leq 1$. Choosing $x \equiv \mathbb{1}_{[0,1]}$, then $\left\|\mathbb{1}_{[0,1]}\right\|_{\infty}=1$, and

$$
\delta\left(\mathbb{1}_{[0,1]}\right)=1,
$$

which implies $\|\delta\|_{(C([0,1]))^{*}}=1$.
(b) Consider for $n \in \mathbb{N}$,

$$
x_{n}(t)= \begin{cases}-2 n^{2} t+2 n, & t \in\left[0, \frac{1}{n}\right] \\ 0, & t \in\left(\frac{1}{n}, 1\right]\end{cases}
$$

Then $\left\|x_{n}\right\|_{1}=1$ and $\delta\left(x_{n}\right)=2 n$, therefore δ is unbounded since we can take n arbitrarily large.

